skip to main content


Search for: All records

Creators/Authors contains: "Peterfreund, Alan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Computing education (CEd), or computer science education (CSEd), research has the potential to affect not only what and how we teach, but also who is taught and where. While CEd has grown as a discipline over the past two decades, many institutions still lack formal departments or programs. Given that it is a specialized and interdisciplinary area of research, we wanted to assess the values of collaboration and access. To develop a better understanding of the researchers and institutions working in CEd, we manually collected publication data from the Innovation and Technology in Computer Science Education (ITiCSE) and the ACM International Computing Education Research (ICER) conferences, and the ACM Transactions on Computing Education journal, between 2015 and 2020. Using a collective total of 1099 publications, we analyzed affiliation information about the authors and their institutions. Although we hoped to uncover a global presence and collaborative relationships demonstrating a “CSEd for all” mindset, instead we found that North America and Europe were over-represented relative to other continents. Additionally, collaborations remained a national or regional affair, for the most part. While many factors may contribute, from language barriers to financial obstacles, communication across country lines needs to improve to truly develop a more equitable international presence in the field. Through this research, we hope to raise awareness of where CEd research is being conducted and what level of collaboration occurs between institutions and countries. Moreover, we want to encourage researchers to seek alternative perspectives and to expand their collaborations to ensure CEd work truly encompasses a broader worldview. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Although computer science education (CSEd) is growing rapidly as a discipline, presently there are a limited number of formal programs available for students to pursue graduate degrees. To explore what options exist, we sought to develop a better understanding of the researchers and institutions currently working in CSEd. We collected publication data between 2015 and 2020 from the Innovation and Technology in Computer Science Education (ITiCSE) and ACM International Computing Education Research (ICER) conferences, and from the ACM Transactions on Computing Education (TOCE) journal. Using a total of 1,099 publications, we analyzed the authorship blocks and their affiliations. We created a comprehensive database, used for analysis on recent contributions to CSEd research. Among other findings, we observed that 2,068 distinct authors contributed, spanning 578 global institutions. From these, 963 of the authors came from 236 distinct universities in the United States. Moreover, we found that most often, new growth from international contributions resulted from the participation of additional universities, whereas in the United States most growth was the result of new contributors from the same universities. The results of this research are intended to encourage global collaborations, to provide an informative guide about recent publications in the field, and also to serve as a guidepost for graduate recruitment and further exploration into CSEd research and programs. 
    more » « less
  4. Facilitating the development of a common framework for monitoring progress in K-12 computer science (CS) education and advocacy with an emphasis on broadening participation is the key to constructing strong CS education policy. Based on a project that brought together leadership teams from six states, a framework for measuring broadening participation in computing (BPC) and setting the foundation for national scaling was developed. Built around a collaboration of leaders representing experience in data gathering, data analysis, data reporting, and data utilization, this project applied the tenets of collective impact to address the challenge of consistently measuring progress toward BPC across state contexts. By establishing a common agenda, including mutually agreed upon definitions of computer science education and broadening participation, these leaders guided the selection of metrics. This led to the development of shared measurement systems and built a deeper understanding of state data systems across the participating states. This phase resulted in common goals and a monitoring system to measure BPC efforts that could inform state policy efforts. Mutually reinforcing activities included the development and sharing of tools, allowing stakeholders to quickly and accurately analyze and disseminate data that drives BPC measurement and policy work. Guided by backbone support to coordinate the work and continuous communication, meaningful participation of all stakeholders was central to the project. Making the case for CS education policy via common metrics and measuring progress across a region stands to impact BPC policy efforts across the United States. The common framework developed in this project serves as a call to action, especially for state and local education agencies committed to increasing diversity in computer science pathways.

     
    more » « less
  5. null (Ed.)
    Opportunities for training CS K-12 pre-service and in-service teachers, research in CS Education, and career pathways for PhDs/EdDs in CS education are happening, but often in an uncoordinated way. We advocate that now is the right time for CS and Education to collaborate on developing new joint degree programs in Computer Science Education and to explore joint faculty appointments. High undergraduate enrollment in computing programs and the increasing interest in CS courses from non-majors represent a unique opportunity for starting successful programs. As more of CS undergraduates are undergraduate TAs and see teaching and learning from a non-learner perspective, their interest in education has also increased. The growing interest in CS education, including the need for effecting CS teaching at both K-12 and the undergraduate level, provide interesting job opportunities for CS education researchers. As CS departments develop new undergraduate degree programs and scale class sizes, research on questions like How do we teach effectively computing to different audiences? How can we assess CS learning? What are culturally responsive pedagogies? is important. To answer many of these and related questions, CS departments should be actively engaged in CS Education research, from training graduate students in interdisciplinary programs to research programs. This BOF will provide a platform for the discussion on what such graduate programs – from certificate to a PhD – can and should look like, what challenges exist to creating them, and how students with different backgrounds should get trained in the relevant foundations of CS and Education. 
    more » « less
  6. Until recently, computer science (CS) has been predominantly taught at upper-secondary or tertiary levels. Lately, however, CS curricula have been introduced into school systems from the very first year of school. In this paper, we undertake a participatory research approach, using focus group discussions between a group of experts in the field of evaluation and assessment at the primary level (K-5). The group considered the evaluation and assessment measures they have used, what their current needs are and how the CS education community can move towards meeting those needs. We present the discussion results as a position paper, situated in the context of broader education research. The experts identified three key priorities for the education research community: creating a universal taxonomy of assessment in the primary grades (K-5), creating measurements of student progression and growth over time, and creating culturally relevant evaluations and assessments. Through identifying key priorities, this work provides direction for urgently needed resource development and research directions for K-5 evaluation and assessment. 
    more » « less
  7. Computer science education has been making dramatic increases in recent years. Across the US, different states are advancing computer science education through different policies. However, as a state makes choices to advance computer science education, it is critical to consider how these policies will broaden participation in computing (BPC). Many have indicated that only white and Asian males (who make up 30% of our population) currently have the opportunity/privilege to engage in computer science education. Therefore, as we implement state-level computer science education reform, it is critical that BPC remains as our guiding principle. Expanding Computing Education Pathways (ECEP) was created as an NSF national alliance to support state-level educational reform with regards to computer science. Over the past 6 years, this alliance of 22 states and Puerto Rico have worked together to share policies to advance BPC in each state. Through these experiences, ECEP has proposed that state change related to CS educational reform follows five stages: (1) Find your leader(s) and change agents; (2) understand the CS education landscape and identify the key issues/policies; (3) gather and organize your allies to establish goals and develop strategic plans and; (4) get initial funding to support change and; (5) building and utilizing data infrastructure that informs strategic BPC efforts. This study examined the ECEP alliance and the five-stage model through the 25,000+ documents and data sources over the past decade, specifically investigating how these five stages impacted states’ overall BPC efforts. Results indicated that these 5 stages seemed to support states’ BPC efforts.

     
    more » « less